Math 181
Final Exam Name

For full credit, please show your work or explain ;'our answer for each problem.

1. Find the following limits.
. sin3x
a. lim
x>0 X

b lim———
0 2x? + 4x

2. Find the derivatives of the following functions.
a. f(x)=e"sin3x

b. f(x)=3In(cosx)+arctan(2x?)




3. Find the equation of the line tangent to the curve x’y —3y”? = 2x at the point (-1,1).

4. Given the graph of the derivative f'(x), find the values of x where the function
f(x) has
N |

a. critical points.

‘F'(x)

b. local maxima.

¢. local minima.

-+
+4-

4

~ d. inflection points.




5. Given f(x)=x"+3x>+2.

a. Find the intervals where f is increasing and decreasing, and find the local maxima
and minima.

b. Find the intervals where f is concave up and concave down, and find the inflection
points. '



6. For the function g(z) shown in Figure 2.3, arrange the following numbers in increasing order.
@ 0 ® ¢'(-2) © 4¢'(0) @ 4() © ¢0)

9(z)

Figure 2.3

7. Find the indefinite integrals.

a. [(3Vx+sinx)ds

sz +2x+1



-2 8. A car is moving along a straight road from A to B, starting from A at time ¢ = 0. Below is the velocity (positive
direction is from A to B) plotted against time.

velocity (kmvimin)
2

e ~—y ¢ (minutes)
1 2 3 45 6 7\3/9
-1

-2

How many kilometers away from A is the car at time t = 2, 5, 6, 7, and 9?

ey e . . e e . av
9. Suppose the rate at which ice in a skating pond is melting is given b = =41+2,

where V is the volume of the ice in cubic feet, and ¢ is the time in minutes.

(a) Write a definite integral which represents the amount of ice that has melted in the
first 4 minutes.
(b) Evaluate the definite integral in part (a).




10. Sketch and find the area between the graph of f(x) = x(x + 2)(x —3) and the x-axis
i the interval [-2,3].

11. Given the graph of the derivative F’(x) with the areas as shown in the graph
below, and F(0) = 0, complete the table and then sketch the graph of the function
F(x). Show clearly where the graph is increasing, decreasing, concave up, and
concave down.

M ) +

area =3
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12. Match the following functions with their antiderivatives:
Function Antiderivative

(a) 0

_ \V

®) (

N_/

{c) (U1)]

(9 (04

/AR VAN



Extra Credit Problem

The function f(t) is graphed below and we define

F(z) = / ) f(t)de.

Are the following statements true or false? Give a brief justification of your answer.

f(t)

} i +— ¢

(a) F(z) is positive for all £ between 2 and 3.

(b) F(z) is decreasing for all £ between | and 3.

(¢) F(z)isconcave down forz = 3
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\‘3’/‘? 3. Find the equation of the line tangent to the curve x’y —3y? = 2x at the point (-1,1).
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;7 | ,; 4. Given the graph of the derivative f’(x), find the values of x where the function
./ f(x) has
a. critical points. -
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b. local maxima.

._,61

c. local minima. ' }
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* d. inflection points.
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V5, Given f(x)=x"+3x>+2.

a. Find the intervals where f is mcreasmg and decreasing, and find the local maxima
and minima.
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b. Find the intervals where f is concave up and concave down, and find the inflection
points.
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6. For the function g(z) shown in Figure 2.3, arrange the following numbers in increasing order.

8\ @ 0 ® ¢'(-2) ) ¢'(0) @ 4'Q1) e 9@
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Figure 2.3
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A car is moving along a straight road from A to B, starting from A at time ¢ = 0. Below is the velocity (positive
direction is from A to B) plotted against time.

velocity (knvimin)
2
1
" +~ ¢ (minutes)
1 2 3 45 6 W9
-1
-2

How many kilometers away from A is the car at time ¢t = 2, 5, 6, 7, and 9?7
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9. Suppose the rate at which ice in a skating pond is melting is given b = =4t+2,

?)T" rL where ¥V is the volume of the ice in cubic feet, and ¢ is the time in minutes.

(a) Write a definite integral which represents the amount of ice that has melted in the

first 4 minutes.
(b) Evaluate the definite integral in part (a).
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arE % 10. Sketch and find the area between the graph of f(x) = x(x+2)(x—3) and the x-axis
87 D intheinterval [-2,3]. |
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} - 11. Given the graph of the derivative F'(x) with the areas as shown in the graph

e below, and F(0) = 0, complete the table and then sketch the graph of the function
F(x). Show clearly where the graph is increasing, decreasing, concave up, and
concave down.
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12.

Match the following functions with their antiderivatives:
Function

(a)
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Extra Credit Problem

The function f(t) is graphed below and we define

F(z) = / f(bya.

Are the following statements true or false? Give a brief justification of your answer.

f(e)
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(a) F(z) is positive for all z between 2 and 3.
(b) F(z) is decreasing for all £ between | and 3. =oALS =

. J ; <
G e ate d"\‘&" -

. ] N -
(c) F(x)isconcave down for z = =. FALSE
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