For full credit, please show your work or explain your answer for each problem.

1. Find the following limits.

a.
$$\lim_{x\to 0} \frac{\sin 3x}{x}$$

b.
$$\lim_{x\to\infty} \frac{x^2-3}{2x^2+4x}$$

2. Find the derivatives of the following functions.

a.
$$f(x) = e^{-x} \sin 3x$$

b.
$$f(x) = 3\ln(\cos x) + \arctan(2x^2)$$

3. Find the equation of the line tangent to the curve $x^2y - 3y^2 = 2x$ at the point (-1,1).

4. Given the graph of the <u>derivative</u> f'(x), find the values of x where the function f(x) has

- a. critical points.
- b. local maxima.
- c. local minima.
- d. inflection points.

- 5. Given $f(x) = x^3 + 3x^2 + 2$.
- a. Find the intervals where f is increasing and decreasing, and find the local maxima and minima.

b. Find the intervals where f is concave up and concave down, and find the inflection points.

- 6. For the function g(x) shown in Figure 2.3, arrange the following numbers in increasing order.
 - (a) 0
- (b) g'(-2)
- (c) g'(0)
- (d) g'(1)
- (e) g'(3)

Figure 2.3

7. Find the indefinite integrals.

a.
$$\int \left(3\sqrt{x} + \sin x\right) dx$$

b.
$$\int \frac{x^2 + 2x + 1}{x} dx$$

A car is moving along a straight road from A to B, starting from A at time t = 0. Below is the velocity (positive direction is from A to B) plotted against time.

How many kilometers away from A is the car at time t = 2, 5, 6, 7, and 9?

- 9. Suppose the rate at which ice in a skating pond is melting is given by $\frac{dV}{dt} = 4t + 2$, where V is the volume of the ice in cubic feet, and t is the time in minutes.
- (a) Write a definite integral which represents the amount of ice that has melted in the first 4 minutes.
- (b) Evaluate the definite integral in part (a).

10. Sketch and find the area between the graph of f(x) = x(x+2)(x-3) and the x-axis in the interval [-2,3].

11. Given the graph of the derivative F'(x) with the areas as shown in the graph below, and F(0) = 0, complete the table and then sketch the graph of the function F(x). Show clearly where the graph is increasing, decreasing, concave up, and concave down.

<u>Function</u>

Antiderivative

(a)

Extra Credit Problem

The function f(t) is graphed below and we define

$$F(x)=\int_0^x f(t)dt.$$

Are the following statements true or false? Give a brief justification of your answer.

- (a) F(x) is positive for all x between 2 and 3.
- (b) F(x) is decreasing for all x between 1 and 3.
- (c) F(x) is concave down for $x = \frac{1}{2}$.

Math 181

Final Exam

Name

For full credit, please show your work or explain your answer for each problem.

1. Find the following limits.

a.
$$\lim_{x \to 0} \frac{\sin 3x}{x} = \lim_{x \to 0} \frac{3 \cos 3x}{1} = \boxed{3}$$

b.
$$\lim_{x \to \infty} \frac{x^2 - 3}{2x^2 + 4x} = \lim_{x \to \infty} \frac{1 - \frac{3}{x^2}}{2x^2 + \frac{1}{x}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

2. Find the derivatives of the following functions.

a.
$$f(x) = e^{-x} \sin 3x$$

$$f'(x) = -e^{-x} \sin 3x + 3e^{-x} \cos 3x$$
$$= \left| e^{-x} \left(3 \cos 3x - \sin 3x \right) \right|$$

b.
$$f(x) = 3\ln(\cos x) + \arctan(2x^2)$$

$$f'(x) = 3 \cdot \frac{1}{\cos x} \cdot (-\sin x) + \frac{1}{1 + 4x^{+}} \cdot 4x$$

= $\left[-3 \cdot \tan x + \frac{4x}{1 + 4x^{+}} \right]$

3. Find the equation of the line tangent to the curve $x^2y-3y^2=2x$ at the point (-1,1).

$$\frac{d}{dx}(x^2y) - \frac{d}{dx}(3y^2) = \frac{d}{dx}(2x)$$

$$2xy + x^2 \frac{dy}{dx} - 6y \frac{dy}{dx} = 2$$

$$(x^2 - 6y) \frac{dy}{dx} = 2 - 2xy$$

$$\frac{dy}{dx} = \frac{2 - 2xy}{x^2 - 6y}$$

$$m = \frac{dy}{dx} = \frac{2 - 2xy}{x^2 - 6y}$$

$$m = \frac{dy}{dx} = \frac{2 + 2}{1 - 6} = -\frac{4}{5}$$

$$y-1 = -\frac{4}{5}(x+1)$$

$$V = -\frac{4}{5}X + \frac{1}{5}$$

4. Given the graph of the <u>derivative</u> f'(x), find the values of x where the function f(x) has

b. local maxima.

c. local minima.

d. inflection points.

- 5. Given $f(x) = x^3 + 3x^2 + 2$.
- a. Find the intervals where f is increasing and decreasing, and find the local maxima and minima.

$$f'(x) = 3x^2 + 6x$$

 $f'(x) = 0 =>$

 $f'(x) = 0 \implies 3x(x+2) = 0$

Critical points: -2,0

Since f'(x) > 0 on the intervals $(-\infty, -2)$, $(0, \infty)$ f is increasing on $(-\infty, -2)$, $(0, \infty)$.

Since f(x) KO on the interval (-2,0)

f is decreasing on (-2,0).

By the first derivative test there is a local maximum at x=2 and a local minimum at x=0.

b. Find the intervals where f is concave up and concave down, and find the inflection points.

$$f_{\parallel}(x) = 0 \implies x = -1$$

 $f''(x) > 0 \text{ on } (-1,\infty) \implies f \text{ is concave up on } (-1,\infty)$ $f''(x) < 0 \text{ on } (-\infty,-1) \implies f \text{ is Concave down on } (-\infty,-1)$

Since I' changes its sign at X=-1, there is inflection point at x = -1.

- 6. For the function g(x) shown in Figure 2.3, arrange the following numbers in increasing order.
 - (a) 0
- (b) g'(-2)
- (c) a'(0)
- (d) g'(1)
- (e) g'(3)

Figure 2.3

$$g'(c) < g'(1) < o < \overline{g}'(-2) < g'(3)$$

 c, d, a, b, e

7. Find the indefinite integrals.
a.
$$\int (3\sqrt{x} + \sin x) dx = 3\frac{x^{\frac{3}{2}}}{\frac{3}{2}} - \cos x + C$$

$$= 2x^{\frac{3}{2}} - \cos x + C$$

b.
$$\int \frac{x^2 + 2x + 1}{x} dx = \int \left(x + 2 + \frac{1}{x} \right) dx = \frac{x^2}{2} + 2x + \ln|x| + C$$

8. A car is moving along a straight road from A to B, starting from A at time t = 0. Below is the velocity (positive direction is from A to B) plotted against time.

How many kilometers away from A is the car at time t = 2, 5, 6, 7, and 9?

9. Suppose the rate at which ice in a skating pond is melting is given by $\frac{dV}{dt} = 4t + 2$, where V is the volume of the ice in cubic feet, and t is the time in minutes.

(a) Write a definite integral which represents the amount of ice that has melted in the first 4 minutes.

(b) Evaluate the definite integral in part (a).

$$\int_{0}^{4} (4t+2) dt$$

(b)
$$\int_{0}^{4} (4t+2) dt = 2t^{2} + 2t \Big|_{0}^{4} = 2.16 + 8 = \boxed{40 \text{ ft}^{3}}$$

10. Sketch and find the area between the graph of f(x) = x(x+2)(x-3) and the x-axis in the interval [-2,3].

11. Given the graph of the derivative F'(x) with the areas as shown in the graph below, and F(0) = 0, complete the table and then sketch the graph of the function F(x). Show clearly where the graph is increasing, decreasing, concave up, and concave down.

Function

Antiderivative

$$B = I$$

Extra Credit Problem

The function f(t) is graphed below and we define

$$F(x) = \int_0^x f(t)dt.$$

Are the following statements true or false? Give a brief justification of your answer.

- (a) F(x) is positive for all x between 2 and 3.
- (b) F(x) is decreasing for all x between 1 and 3. ALSE
- (c) F(x) is concave down for $x = \frac{1}{2}$. FALSE
- (a) The area above the t-axis from 0 to 2 is greater than the area below the t-axis from 2 to 3.
- (b) Fis till increasing on the internal (1,2).
- (c) At t = = the derivatie is positive, times F is concave up.