Convergence Tests for Series

$\frac{\text{Test for Divergence}}{\displaystyle\sum_{n=1}^{\infty}a_{n}}$	If $\lim_{n\to\infty} a_n \neq 0$, then the series diverges If $\lim_{n\to\infty} a_n = 0$, then inconclusive
Geometric Series $\sum_{n=1}^{\infty} ar^{n-1} \text{ or } \sum_{n=0}^{\infty} ar^n$	■ If $ r < 1$, the series converges to $\frac{a}{1-r}$ ■ If $ r \ge 1$, then the series diverges
Integral Test $\sum_{n=c}^{\infty} a_n \text{ where } c \ge 0 \text{ and } a_n = f(n) \text{ for all } n$	• $f(n)$ must be continuous, positive, and decreasing • If $\int_c^\infty f(x)dx$ converges, then the series converges • If $\int_c^\infty f(x)dx$ diverges, then the series diverges
$\sum_{n=1}^{\infty} \frac{1}{n^p}$	 If p > 1, then the series converges If p ≤ 1, then the series diverges
$\frac{\text{Comparison Test}}{\sum a_n \text{ and } \sum b_n \text{ where } 0 \leq a_n \leq b_n \text{ for all } n}$	• If $\sum b_n$ converges, then $\sum a_n$ converges • If $\sum a_n$ diverges, then $\sum b_n$ diverges
Limit Comparison Test $\sum a_n \text{ and } \sum b_n \text{ where } a_n, b_n > 0 \text{ and } \lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$	 If ∑ b_n converges, then ∑ a_n converges If ∑ a_n diverges, then ∑ b_n diverges To find b_n consider only the terms of a_n that have the greatest effect on the magnitude
Alternating Series Test $\sum_{n=1}^{\infty} (-1)^{n-1} b_n \text{ where } b_n > 0$	• Converges if $0 < b_{n+1} < b_n$ for all n and $\lim_{n \to \infty} b_n = 0$
Absolute Value Test $\sum a_n$	 If ∑ a_n converges, then ∑ a_n converges If the series of absolute values ∑ a_n is convergent, then the series is <i>absolutely convergent</i> If the series is convergent but not absolutely convergent, then the series is <i>conditionally convergent</i>
Ratio Test $\sum a_n \text{ with } \lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = L$	 If L < 1, then the series converges absolutely If L > 1 or L is infinite, then the series diverges If L = 1, then the test is inconclusive
$\sum a_n \text{ with } \lim_{n \to \infty} \sqrt[n]{a_n} = L$	 If L < 1, then the series converges absolutely If L > 1 or L is infinite, then the series diverges If L = 1, then the test is inconclusive

Flowchart for Convergence Tests for Series

